Object Orientation

Roy K. Clemmons

Object Orientation
To be object oriented means to be concerned with objects. An object is a collection of capabilities and is a representation of 1) a real-life entity or 2) an abstraction (generalization). For example, objects in a flight reservation system might include: an airplane, an airline flight, an icon on a screen, or even a full screen with which a travel agent interacts.

Objects have state and behavior. For example, bicycles have state such current gear, current pedal cadence, two wheels, number of gear and behavior such as braking, accelerating, slowing down, and changing gears.

An object is defined by what it can do, not by how it does it. The emphasis must be on what an object can do - the capabilities it has and not on how those capabilities are implemented.

The key concept of object orientation is modeling. Objects are modeled in software. Object state is modeled as variables and behavior is modeled as methods (functions, subroutines, etc). Interactions between objects are modeled as messages and interfaces.

[image: image1.png]Object 1

[—

message
Pl

Object2

1

7

interface

Definitions:

1. Technically, an object is a software “bundle” of variables (state), methods (behavior) and interfaces (interactions), but practically it is a collection of capabilities.

2. A model is a simplified representation of something else.

3. Object orientation models state, behavior, and interaction.

Object Oriented Analysis
Object Oriented Analysis (OOA) investigates and discovers the business processes and rules associated with the problem domain. OOA is concerned with developing software engineering requirements and specifications that are expressed as a system's object model (a population of interacting objects). It is not concerned with a solution. In a purely OOA world, A Software Requirements Specification is a document containing a complete description of what the software will do without describing how it will do it. The how and implementation constraints are decided by the process of object-oriented design. Moreover, many design patterns (which promote reuse) have been defined to solve generic problems that are common in many applications.

Definitions:

1. Object Oriented Analysis finds and describes a population of interacting objects, each of which is an atomic bundle of data and functionality, in the problem domain.

2. Design patterns are standard, generalized solutions to common problems in object-oriented software design. They solve recurring problems found in many software development projects and have been demonstrated to be efficient. For instance, queues, FIFOs/stacks, buffers, and caches are examples of the Container pattern.

Object Oriented Design
Object Oriented Design (OOD) builds on the products developed OOA by refining candidate objects into classes (templates), defining message protocols for all objects, defining data structures and procedures, and mapping these into an object-oriented programming language (OOPL). OOD proposes a logical solution for the requirements identified in the analysis.

Analysts see objects as descriptions of required properties and behavior. Designers view objects as computational entities which realize the desired properties in a manner that may be readily implemented using common object-oriented programming languages and tools. In this way, design serves as a bridge between analysis activities that describe those properties a system should possess, and implementation activities that describe the language and environment-dependent manner in which it is constructed.

Design can be thought of in two phases and both phases are typically done in an iterative fashion:

1. High-level design deals with the decomposition of the system into large, complex objects.

2. Low-level design specifies attributes and methods at the level of individual objects. This is also where a project can realize most of the reuse of object-oriented products, since it is possible to guide the design so that lower-level objects correspond exactly to those in existing object libraries or to develop objects with reuse potential.

Definition:

1. Object Oriented Design (OOD) is concerned with developing an object-oriented model to implement the requirements identified in the OOA.

What OOA/OOD is NOT:

· OOA/OOD is not strictly about derivation, class hierarchies, UML, .NET, and so forth. These are tools that the OO designer puts to use in order to structure the analysis, the design, and the implementation, but they aren't central to what makes an OO system object oriented.

· UML is notation – a way to communicate intent.

While design artifacts are essential, the point of design is to think deeply about the problem – not to produce documents. UML, Requirements doc, Functional Specs, etc. are the artifacts of the process and not the process itself. Simply creating a set of documents does not a good program make.

Definition:

Object Oriented Analysis and Design (OOA/OOD) identifies the objects of a problem domain, the behaviors and responsibilities of those objects, and how the objects interact with each other.

Object Oriented Programming

Designers see objects as software abstractions. Implementers see objects as software realities. Therefore, the goal of Object Oriented Programming (OOP) is to implement a system correctly, efficiently, and quickly on a particular set or range of computers, using particular tools and programming languages as specified in the design.

Implementation activities are primarily environmental. They deal with the realities of particular machines, systems, languages compilers, tools, developers, and clients necessary to translate a design into working code.

Methodologies

Generally, there are 3 types object oriented processes or methodologies:

1. Heavyweight processes work well when the entire problem can be fully defined before development begins. E.g.: SEI Capability Maturity Model, Rational Unified Process
2. Lightweight processes work well when the problem definition changes as development is in progress. E.g.: Extreme Programming (XP), Feature Based design.

3. Agile processes are essential when requirements change frequently or are ill defined. E.g.: Agile

An Generic Methodology
I. Analysis: Identify and document what is needed

1. Understand the problem domain

· Goal: intelligent conversation using the vocabulary of the domain itself, without the experts needing to stop and explain what they think of as basic concepts.

2. Develop an overview problem statement

· Formulate problem statement in language of domain – not technical. State the problem being solved the what, and why, but not how.

Example from the Banking domain:

A customer walks into a bank, gets a withdrawal slip from the teller, and fills it out. The customer then returns to the teller, identifies himself, and hands the teller the withdrawal slip. (The teller verifies that the customer is who he says he his by consulting the bank records.) The teller then obtains an authorization from a bank officer and dispenses the money to the customer.

3. Using the problem statement, identify potential objects by underlining the nouns. The potential interactions will also become clearer.

· CRC cards are a useful tool to document responsibilities

4. Begin a glossary

· In general, terms immediately recognizable by someone familiar with the domain shouldn't be defined, but often a term has an ambiguous meaning, or it's used in a limited way in the current problem, so will need to be explicitly defined. Also, consistency is critical. It's essential that the same word not be used to mean two different things, and that two different words never mean the same thing.

5. Identify and document Goals of the system

· What is the user really trying to accomplish?

· For a Point of Sale Terminal, two goals might be to provide quick checkout and automatic inventory control

6. Identify and document Use Cases (and business rules)

· A use case is a stand-alone, single task performed by the user that has a useful outcome. Ask, “What is the intent? For example, “logging on” is not a useful use case because nobody intends to use a computer to log on. Their intent is to accomplish something useful with an application. The complete set of use cases identify all tasks necessary to solve all problems defined in the "Problem Statement." Typically, the "boundary" or analysis-level use cases are the ones that the user thinks about. Other use cases define tasks that are performed internally by the program to implement the boundary cases.

· Identify Activities from the use cases

· Identify risks

7. Identify and document classes and responsibilities

· CRC Cards and the General Responsibility Assignment Software Patterns (GRASP) are sometimes used to define responsibilities to objects

8. Develop a conceptual model for the use cases

· Models domain concepts

· Insures domain understanding

· It is not a representation of software components

9. Develop system level sequence events

II. Design: Logical Solution

1. Develop/Refine Use cases to include more detail

· real world design

· storyboards, mock-ups

· low-level interaction

2. Develop Interaction Diagrams from the conceptual model

· One of the most important artifacts

· Significant time spent in creating them

· Design patterns are applied

3. Develop Class Diagrams

· Add methods and additional attributes which were discovered in the collaboration diagrams to the classes in the conceptual model.

4. Develop Prototypes as necessary at all levels

III. Construction: Implement Design in Code

1. Use an iterative approach

2. Create class definitions from class diagrams

3. Create methods from interaction diagrams

4. Test first, then code

Two critical aspects of OOA/OOD:

1. Assignment of responsibilities to objects is the single most important skill in OOA/OOD.

· It’s the one activity that must be accomplished – even in rushed projects

· It has the most profound effect on the robustness, maintainability and reusability of the object

· Can make or break a system

2. Discovering suitable objects runs a close second

· Real world objects don’t always make for good software objects

· Interactions can be complex

· Boundaries can overlap

· Easy to develop trivial classes

Additional Notes

· Enterprise Architect can forward and reverse engineer code. If we choose to utilize these features we probably want to decide, up-front, on programming standards; naming conventions, style, comments, etc.

· Poorly designed and implemented OO systems are more difficult to maintain and extend than non-OO systems.

